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We consider the problem of finding overrepresented arrangements of secondary struc-
ture elements (SSEs) in a given dataset of representative protein structures. While
most papers in the literature study the distribution of geometrical properties, in par-
ticular angles and distances, between pairs of interacting SSEs, in this paper we
focus on the distribution of angles of all quartets of SSEs and on the extraction of
overrepresented angular patterns. We propose a variant of the Apriori method that
obtains overrepresented arrangements of quartets of SSEs by combining arrangements
of triplets of SSEs. This specific case will pose the basis for a natural extension of

the problem to any given number of SSEs. We analyze the results of our method
on a dataset of 300 nonredundant proteins. Supplementary material is available at
http://www.dei.unipd.it/nciompin/papers/CGZ-jbcb-suppl.pdf/.

Keywords: Protein’s structures; secondary structures; computational geometry; overrep-
resented motifs.

1. Introduction

The problem of finding recurrent three-dimensional (3D) patterns in proteomic
data is of biological interest, and therefore has been studied in different contexts
and with various techniques.1,2 Although information on the fold of a protein is
already totally contained in its amino acid sequence, calculation of the minimal
energy among all possible conformations is an overwhelming task even for the
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fastest computer. Developing methods for discovering statistical rules that gov-
ern structures may help answer basic biological and biochemical questions. Sev-
eral statistical models have been introduced to evaluate the statistical significance
of arrangements of points or substructures in 3D space.3–5 Structure prediction
methods6,7 may be aided by the statistical analysis presented here. The characteri-
zation and significance of global constraints on secondary structure elements (SSEs)
can be of help in the definition of scoring functions to assess the quality in predicted
models and correct packing defects. Furthermore, such knowledge could be used to
guide the engineering of stable protein modules: the detection of overrepresented
and underrepresented arrangements may be taken as an indication of physical pos-
sibility or impossibility of artificial structures.8 In protein structure comparison,
hashing techniques based on SSEs are often used for the efficient retrieval of simi-
larity information for a target structure against all structures of the Protein Data
Bank (PDB) or a subset of representative structures.9–11 The statistical properties
of geometric invariants can assist in defining hashing strategies. For this reason, a
great deal of effort has been spent over the years to disclose hidden rules about the
organization of SSEs.12,13

A simplified description of 3D protein structure considers it as an arrangement
of SSEs. The possible ways SSEs aggregate in space are somewhat limited: all
protein structures determined up to now can be grouped in a relatively limited
number of different folds. Moreover, it is well known that interacting SSEs show
marked preferences in their relative orientation. For example, interacting β-strands
are very often organized in sheets, where each strand is disposed in a roughly
parallel or antiparallel orientation with respect to the neighboring ones.14 Packing
angle preferences between interacting α-helices have also been studied extensively
and general rules extracted.15–23 The angle of interacting SSEs is measured between
linear segments associated to secondary structures, such as the axis of an α-helix
or the endpoints of a β-strand. Interaction between α-helices has been defined
according to different criteria. The most common criterion is that the length of the
line of closest approach perpendicular to both segments must be within a predefined
threshold. If the helices are assumed as infinite in length, this distance is always
defined. In Walther et al.’s paper,22 the definition is extended to the more realistic
case where helices are of finite length. A simpler criterion for interaction, also used in
this paper, defines a pair of helical structures as interacting if the distance between
their midpoints is less than a given threshold.

In Bowie’s paper,15 it was observed that the expected uniform random distri-
bution of angles is actually biased toward angles near 90◦. When this geometric
bias was taken into account, the observed peaks in the interacting helix-helix angle
distribution were significantly attenuated: correcting for statistical bias, the true
preference for particular packing angles in soluble proteins is not as strong as pre-
viously thought.

The global interaction of multiple SSEs in space is much less analyzed
and understood.24 In the past, we have conducted a statistical analysis on
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the arrangements of triplets of SSEs, including noninteracting α-helices and
β-strands.25,26 We found that the distribution of triplets of angle cosines is far from
being random, with a marked preference for certain angle combinations. Specifically,
we showed that planar configurations of α-helices and β-strands appear more fre-
quently than expected for uniformly distributed vectors, and alignment is strongly
preferred compared to that expected for uniformly distributed vector triplets.

The present study extends the previous analysis to quartets of SSEs. We measure
the distribution of the six angles formed by quartets of secondary structure segments
that are not necessarily directly interacting, and compare such distribution with
that which would be expected for a randomly distributed set of quartets of vectors
in order to determine significant deviations. We present results on the distribution
of secondary structures within a selected set of 300 nonredundant proteins. The
results are consistent with prior studies on triplets in that planar configurations of
unit vectors of α-helices and β-strands appear more frequently than expected for
uniformly distributed vectors. For overrepresented patterns of angles, the relation
γ + δ = φ characterizing the angles γ, δ, and φ formed by three coplanar vectors in
3D space holds generally for more than a triplet of segments which is a subset of
the overrepresented quartet. This implies that, more often than expected, the SSEs
are located on parallel planes.

One of the findings of our analysis is that overrepresented angular patterns of
quartets are often compatible with known motifs of interacting helices or strands,
although such motifs are a very small fraction of the quartets that contribute to the
frequency of the patterns. In other words, the same angular patterns are shared by
interacting SSEs as well as by quartets comprising interacting and noninteracting
SSEs. Furthermore, we show that in the top overrepresented pattern among all
configurations of four helices or four strands, at least one pair of SSEs is in contact
but generally more than one. Finally, we observe that overrepresented patterns of
angles tend to form clusters in the six-dimensional (6D) space corresponding to six
angles, and determine such clusters.

Another contribution of the paper is the development of an efficient methodol-
ogy that computes the overrepresented patterns of quartets by assembling frequent
patterns of triplets of segments. The combinatorial explosion makes the problem
of determining quartets remarkably more computationally demanding than that of
triplets. We tested the results of our method by a comparison with the exhaustive
enumeration of quartets. While the exhaustive enumeration of all quartets of SSEs
for even a limited set of 300 representative proteins takes more than 3 days on a
standard PC, our method requires less than 20 minutes. This significant reduction
in computation time is achieved by exploiting an idea similar to the Apriori algo-
rithm often used in data mining. Apriori constructs frequent patterns of k elements
(or itemsets of size k) by joining frequent patterns of size k − 1. In our case, fre-
quent patterns of six angles are constructed by joining frequent patterns of three
angles. Careful attention has to be paid to the fact that the closure property of the
frequency that is assumed in Apriori does not hold for all triplets of angles of a
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sextuple. Our construction can apply to sets with more than four SSEs for which
the enumeration could be prohibitive.

The paper is organized as follows. We formulate the problem in Sec. 2 and
describe the Apriori-based method to generate overrepresented patterns in Sec. 3.
In Sec. 4, we ask the question of whether two sets of unit vectors on a sphere that
have the same angular pattern are in fact geometrically similar. It is easy to show
that there are basically few distinct configurations which cannot be superimposed
corresponding to a given pattern of angles. A discussion of the overrepresented
patterns is in Sec. 5.

2. Problem Description

Given a dataset of protein structures, we address the problem of finding overrep-
resented arrangements of SSEs in terms of geometrical properties. Most papers in
the literature study the distribution of geometrical properties, in particular angles,
of pairs of interacting SSEs.19,21 The scope of this paper is twofold: first, to iden-
tify recurrent configurations of SSEs by means of their geometrical properties; and
second, to pose as the basis to efficiently extract recurrent configurations com-
posed by an arbitrary number of SSEs. Here, we focus on overrepresented config-
urations of multiple SSEs not necessarily interacting and analyze the distribution
of angles of such configurations. We present a study of the distribution of angular
patterns of SSEs computed without considering any notion of distance or distin-
guishing between interacting and noninteracting elements.

Our task is to design a framework to extract overrepresented arrangements of
k SSEs by combining the results obtained with arrangements of k − 1 SSEs. We
discuss in detail how to efficiently obtain overrepresented arrangements of four
SSEs by using the distribution of triplets of SSEs rather than by an exhaustive
generation. This specific case will pose as the basis for a natural extension of the
problem to any given number of SSEs.

Each protein structure of the dataset is given with the list of all SSEs ordered
according to the backbone chain. A line segment is associated to each SSE. For a
β-strand, the line segment is the best-fit segment of the set of atoms of the strand;
while for an α-helix, it is the best-fit axis. For the purpose of our analysis, a line
segment is assumed to be a unit vector applied in the origin of a reference system
in 3D space. Thus, a protein is a list of m unit vectors (s1, s2, . . . , sm).

The arrangement of SSEs is described in terms of the angles formed by all
pairs of corresponding vectors. Let αhk be the angle of sh and sk, 0◦ ≤ αhk ≤
180◦. A triplet of SSEs (si1, si2, si3), with i1 < i2 < i3, is described by three
angles — α12, α13, and α23 — satisfying the triangle inequality. A quartet of
SSEs S = (si1, si2, si3, si4), with i1 < i2 < i3 < i4, gives rise to six angles
Q = (α12, α13, α23, α24, α34, α14). A schematic representation of the unit vectors
derived from a quartet of SSEs can be found in Fig. 1. It is easy to show that,
in the general case, the six angles are not completely independent. More precisely,
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Fig. 1. (a) An example of vector representation for a quartet of SSEs. (b) The unit vectors
translated to the origin (into the unit sphere).

given five of the αhk angles, the sixth angle can take only one of two possible values.
The derivation of such values is omitted for lack of space. Furthermore, when three
out of four segments are mutually orthogonal, then one of the angles formed by the
fourth segment with the three segments is uniquely determined by the other two
angles. Another important question, which will be considered in Sec. 4, is whether
it is possible to superimpose, by a rigid transformation, two quartets forming the
same angles.

For the purpose of our analysis, the angular values are discretized into uniform
intervals, with every interval represented by an integer. More precisely, the range
0◦–180◦ is divided into 10 intervals, and an angle α represented by the integer i

such that i ∗ 18◦ ≤ α < (i + 1) ∗ 18◦. We experimented with several partition
criteria and chose the number of intervals equal to 10. This appears a reason-
able choice if we consider the approximations introduced in calculating the best-fit
segments for strands and helices; furthermore, this ensures a reasonable number
of items per interval. A quartet of SSEs is represented by six integer values, each
within the range [0, 10]. In the following, we refer to the discretized angles simply as
“angles”.

3. Discovery of Overrepresented Patterns

Our approach to find overrepresented angular patterns is similar to the Apriori
algorithm used for data mining applications. Our algorithm finds overrepresented
arrangements of quartets of segments from overrepresented triplets of segments.
It does so by joining overrepresented triplets of angles to obtain overrepresented
sextuplets of angles.

However, our approach differs substantially from Apriori in the way the patterns
are joined together to obtain patterns of larger size. At the basis of the Apriori
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mining algorithm is the anti-monotone or closure property, which states that all
nonempty subsets of a frequent set must also be frequent. In other words, if an
itemset cannot pass the test of being frequent, then all of its supersets will fail the
same test.

The anti-monotone property does not hold for the angles formed by sets of
segments. Consider a frequent sextuple of angles Q = (α12, α13, α23, α24, α34, α14)
and all quartets S of segments with angles Q. Even though Q is frequent, it is
possible that triplets which are subsets of Q are not frequent. This is the case
for the triplet of angles T = (α13, α23, α24), which cannot be formed (in the gen-
eral case) by a triplet of segments that is a subset of an element of S because
the three angles involve all four segments of a single element of S. However,
there are four triplets of angle subsets of a frequent sextuple Q that must be fre-
quent: (α12, α13, α23), (α23, α24, α34), (α13, α14, α34), and (α12, α14, α24). Indeed,
the four triplets are obtained by the four different ways of choosing three seg-
ments out of four. Frequent triplets of angles are extracted by comparing the
observed frequencies of triplets of angles with those of randomly distributed
vectors.

We start by giving an overview of our approach, and then describe each step
in detail. The first two steps use hashing techniques to compute and store all
triplets of angles into hash tables. Geometric hashing techniques were originally
devised in the area of computer vision,27 mostly for object recognition applica-
tions, and were later applied to several matching problems arising in computa-
tional biology.9,11,28 The next two steps 3 and 4 test the deviation of the obtained
angular distribution from that of random vectors. Finally, steps 5 and 6 are based
on a variant of the Apriori method to determine and evaluate the distribution of
quartets.

Procedure: Pattern Discovery

(1) Initialization: From the given protein dataset, generate the set A of all ordered
triplets of angles associated to ordered triplets of SSEs, sorted according to the
order along the backbone.

(2) Build a hash table, indexed by the triplets of angles, that stores all triplets of
segments. Derive a 3D histogram of the distribution of the triplets of A from
the hash table. The histogram has b = 10 bins along each axis, for a total of b3

bins or cells.
(3) Build the distribution of triplets of angles of random unit vectors and derive

the corresponding 3D histogram.
(4) Based on the deviation between the histogram of observed triplets of angles

and that of random triplets, determine the subset C ⊂ A of triplets that are
overrepresented.

(5) Join step: Construct candidate sextuples of angles from triplets of C.
(6) Verification step: Prune candidate sextuples to find the overrepresented

ones.



November 24, 2008 14:20 WSPC/185-JBCB 00384

Mining Overrepresented 3D Patterns of Secondary Structures in Proteins 1073

3.1. Building the hash table

We build a four-dimensional (4D) hash table with the following index structure:
for a given triplet of vectors, three indexes are given by the quantized values of
the angles of the triplet, while the fourth index depends on the composition of the
triplet in terms of the number and position of helices and strands. This index, called
triplet type, is used when a separate analysis is requested for helices and strands.
The size of the cells of the table is the same as the bin size for the histograms. Each
cell in the table contains a list of records, one for every triplet that hashed into it.
The following procedure inserts protein P into the hash table and is a variant of
the one described in Comin et al.9

Procedure: Insert Protein
Given a protein P , all triplets of secondary structures of P are examined and, for
each triplet (pu, pv, pz) with u < v < z, the following steps are executed:

(1) Compute the angles (αuv, αvz , αuz) and determine the triplet type.
(2) Access the cell of the hash table at the location indexed by triplet type and by

the quantized values of (αuv, αvz, αuz).
(3) Append to the list of records at that cell a new record which contains

• the name of protein P ; and
• the identifier of each SSE of the triplet.

The above procedure is repeated for all proteins in the dataset. The construction
of the table is computationally intensive. However, the number of proteins of the
dataset to be inserted is relatively small.

3.2. Generating random triplets

The selection of the frequent triplets is the crucial point of the overall procedure: a
wrong selection can produce a meaningless starting point that can lead to unreliable
results. Thus, this step must be carefully designed. We observe that the distribution
of geometric properties of triplets strongly depends on the features considered. To
avoid bias due to the features considered, we compute the null distribution of such
properties.

Note that, for each protein, all triplets of SSEs are inserted into the hash table
without any distinction between interacting and noninteracting elements. This table
represents the distribution of angles of triplets of SSEs for our dataset of real pro-
teins. Here, we want to construct the distribution of angles of randomly generated
triplets of segments. This new distribution cannot be obtained by simply gener-
ating three angles at random, since the angles in a triplet are highly constrained
and therefore their distribution is far from uniform. Instead, we construct feasible
triplets of random segments and compute their angles.

The random generation of a triplet of angles consists of the generation of three
versors. A versor is a vector of unit length that we assume to be in the semisphere
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identified by a positive z-coordinate. A versor is now uniquely determined by two
parameters: its coordinate z ∈ [0, 1], and its azimuth β ∈ [0, 2π].

Given a dataset of n real proteins, we generate n sets of random vectors, each
corresponding to a real protein and containing the same number of SSEs of such
protein. Then, for each of the n sets, we compute the angles of all triplets of random
vectors and update the hash table accordingly.

We have already observed that the triangular inequality holds for any order of
the three angles α, β, γ of a triplet of segments — it translates into the following
three constraints: α + β ≥ γ, α + γ ≥ β, β + γ ≥ α. This implies that not all
cells of the hash table can be populated by triplets of segments; in other words,
there are cells that will remain empty. Furthermore, some cells can only be partially
populated. Thus, when deciding which cells correspond to the most frequent triplets
of angles, we have to take into account the above consideration and normalize by
the volume of the region of the cell that can in fact be populated. This region
is determined by considering that the above three constraints correspond to the
equations of the three boundary planes, α+β = γ, α+γ = β, β +γ = α, delimiting
the populated area in 3D space. By intersecting each cell of the 3D array with the
three boundary planes, we find out which region, if any, has to be excluded and
consequently compute the volume Vc of the populated region. Thus, the frequency
of a cell (α, β, γ) is Count(α, β, γ)/Vc(α, β, γ), where Count(α, β, γ) is the number
of elements in that cell.

The generation of the n sets of random vectors is repeated several times and,
at the end, each cell of the hash table has the average of the values of the cell
over all random generations. This results in a 3D histogram representing all triplets
of angles, where each triplet has attached a mean and a variance. For the selec-
tion of overrepresented angles, we experimented with different selection policies.
To preserve a reasonable number of candidates, we select configurations of angles
that have a frequency larger than the mean in the corresponding cell of random
data.

3.3. Join and verification steps

The operation join merges four frequent triplets — (α12, α13, α23), (α23, α24,
α34), (α13, α14, α34), and (α12, α14, α24) — into the candidate sextuple (α12, α13,
α23, α24, α34, α14). The four triplets to be merged are such that the last angle of
the first triplet is the same as the first angle of the second triplet, the second ele-
ment of the first triplet is the same as the first element of the third triplet, and so
on. Recall that all angles are discretized. Furthermore, note that two triplets may
coincide.

Once a candidate sextuple has been identified in step 5, the verification pro-
cedure checks that there is in fact a statistically significant number of quartets of
vectors with that sextuple of angles. This number will provide the actual frequency
of the sextuple of angles. The verification step is needed because some triplets of
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segments contributing to the count of frequent triplets of angles cannot be joined
into quartets of segments. For instance, the two triplets might be from different pro-
teins. Two triplets of segments (s1, s2, s3) and (t1, t2, t3) associated to SSEs of the
same protein and forming angles (α12, α13, α23) and (α23, α24, α34), respectively,
can be joined into a quartet of segments with angles (α12, α13, α23, α24, α34, α14)
if s2 = t1 and s3 = t2, i.e. the last two segments of the first triplet coincide
with the first two segments of the second triplet. Two such triplets of segments are
called “consistent” and they contribute one to the frequency count of the associated
sextuple.

To efficiently search for consistent triplets, we use the hash table built in step 2
containing the triplets of segments of all proteins. The frequency or count of a
candidate sextuple (α12, α13, α23, α24, α34, α14) is determined as follows. Access the
hash table at the cells E1 and E2 indexed by (α12, α13, α23) and (α23, α24, α34),
respectively. For each triplet (s1, s2, s3) in E1 with associated protein name P ,
search in E2 for all triplets (s2, s3, t), with any arbitrary t, of the same protein P .
For each such triplet, increment the count if the last angle α14 is compatible with
the candidate sextuple under examination.

4. Spatial Arrangements of Vectors with the Same Angular Pattern

In this section, we discuss why two sets of vectors that share the same angular
pattern may not be necessarily superimposed by a 3D rigid transformation. We
recall that we are considering only angles between SSEs, but not distances between
them. We want to stress that the notion of superimposition is a much stronger
condition. For example, two sets of segments with the same angular pattern that are
one the mirror of the other, from a physical prospective, can serve the same function,
although they cannot be rigidly superimposed. To this end, here we enumerate the
number of possible arrangements of vectors that generate the same angular pattern.
This is of interest since geometric superposition of proteins, and specifically of
SSEs, is often used in protein structure alignment methods to determine structural
similarity.29

We define as “equivalent” two sets of vectors that can be superimposed by a
rigid transformation. We first look at the case of triplets of vectors (a, b, c) with
angles (α, β, γ). We recall that the unit vectors are applied into the origin O of a
coordinate system without considering the actual location of the SSE in 3D space.
It is easy to see that there are two distinct triplets of vectors (a, b, c) and (a, b, c′),
where c and c′ are nonparallel vectors, forming a given triplet of angles (α, β, γ). For
example (see Fig. 2), consider four vectors forming a regular pyramid with vertex
in O; label two opposite vectors of the pyramid a and b and the other two c and
c′. The two triplets of vectors (a, b, c) and (a, b, c′) have the same angles, but are
nonequivalent since they are one the mirror of the other.

The following simple procedure constructs two nonequivalent triplets with the
same angles. All vectors forming a given angle δ with a given vector v are rays of
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γ βα

Fig. 2. An example of two triplets, (a, b, c) and (a, b, c′), with the same pairwise angles, one the
mirror of the other.

the cone with vertex in O and forming angle δ with v. Given two vectors a and b

forming angle α, a third vector forming angles β and γ with a and b, respectively,
is at the intersection of two cones. Two cones intersect at either one or two lines. In
the first case, the only possible triplet consists of vectors lying on the same plane
(α + β = γ); in the latter, there are two nonparallel vectors c and c′ corresponding
to two distinct triplets.

In conclusion, a triplet of angles (α, β, γ) corresponds to two spatial arrange-
ments of unit vectors (a, b, c) and (a, b, c′) that are one the mirror of the other;
equivalently, there exists a transformation with determinant −1 mapping one triplet
of vectors into the other. Loosely speaking, although two triplets of vectors cannot
be superimposed by a rotation (with determinant 1), they correspond to a similar
configuration in terms of angles.

If we extend this argument to quartets of vectors, the number of nonequivalent
arrangements doubles. Consider a sextuple of angles (α12, α13, α23, α24, α34, α14).
To construct all nonequivalent quartets of vectors corresponding to it, we follow a
build-up approach. From the first three angles (α12, α13, α23), we construct either
one triplet of vectors (a, b, c) or two, (a, b, c) and (a, b, c′). Then, we derive the last
vector d. There are four possible cases:

(1) If α12 + α23 = α13 and α23 + α34 = α24, then there is a single triplet (a, b, c)
and a single triplet (b, c, d). Thus, there exists a unique arrangement of four
vectors.

(2) If α12 + α23 = α13 but α23 + α34 < α24, then two distinct arrangements are
possible, (a, b, c, d) and (a, b, c, d′).

(3) Otherwise, if α23 = α34, then four different arrangements are possible, with
three distinct vectors as the last component of the quartet: (a, b, c, d), (a, b, c, d′),
(a, b, c′, d′), and (a, b, c′, d′′).

(4) In all other cases, the following four arrangements are possible: (a, b, c, d),
(a, b, c, d′), (a, b, c′, d′′), and (a, b, c′, d′′′).
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In conclusion, given a sextuple of angles, there can be up to four different
arrangements of segments that generate this angular pattern. On the other hand,
the superimposition is a very constricting condition and two arrangements that may
be considered similar in practice might not be under this restrictive requirement.
Nevertheless, the number of possible arrangements remains particularly small. In
our experiments, we observed that for a given angular pattern, although all four
configurations of segments might exist, in practice there is a strong bias towards
one or two specific arrangements. Again, this reduces the search space when per-
forming motif search and it can be used to filter out infrequent and unfeasible
motifs.

5. Results and Discussion

We selected a set of 300 nonredundant proteins from different families, and com-
puted the set of all triplets of SSEs and their associated linear segments (see supple-
mentary material for a complete list). To include only significant SSEs, we required
helices to have at least seven residues, corresponding to two complete turns of a reg-
ular helix. Strands were required to have at least three residues for proper fitting of
a vector to the Cα coordinates. Secondary structures are represented by the best-fit
line segments. A singular value decomposition (SVD) routine is used to associate a
segment to each α-helix and β-strand.30 Using this dataset, we constructed the hash
table of triplets of angles and compared it with the random distribution to deter-
mine the cells that deviate significantly from the corresponding cells for the random
data. We recall that, at this stage, all triplets of SSEs are considered without any
distinction between interacting and noninteracting elements.

To better appreciate the distributions of real and random triplets, we report both
histograms in Figs. 3(a) and 3(b). By construction, the two histograms contain the
same number of triplets and are computed using sets of segments with the same
composition; consequently, they can be directly compared. The hash table contains
520 nonempty cells (containing a total of 398,853 triplets of vectors), of which 242
were selected as frequent (corresponding to 189,270 triplets). The histogram of the
triplets of angles selected as frequent is shown in Fig. 3(c).

5.1. Analyzing overrepresented patterns of angles

The pattern discovery process finds a set of overrepresented arrangements of four
SSEs. Each arrangement is described by six ordered angles, where an angle cor-
responds to a specific pair of SSEs that is identified by the sequential order of
SSEs along the primary structure. Thus, two arrangements forming the same six
angles, but in a different order, correspond to two different patterns, even though
they can be considered geometrically equivalent. We address this issue by merging
together patterns composed by the same angles and ignoring the relative order of
angles.
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(a) (b)

(c)

Fig. 3. 3D histograms of the distributions of angles between triplets of SSEs. Each axis represents
an angle, and the frequency of each triplet follows the color coding.

By merging patterns, the discovery procedure selects a set of 785 overrepre-
sented patterns, formed by 485,021 quartets of segments, out of 2,262 patterns and
more than 3,000,000 quartets obtained by the exhaustive search. The top overrep-
resented pattern is composed by the discretized angles (1, 2, 3, 7, 8, 9), correspond-
ing to angles in the ranges (18◦–36◦, 36◦–54◦, 54◦–72◦, 126◦–144◦, 144◦–162◦, 162◦–
180◦), and has a frequency of 6,439; the top second pattern has similar angles,
(1, 2, 7, 8, 8, 9), and a smaller frequency of 5,780. The frequency count drops dra-
matically after the first few patterns. The overall distribution of patterns of angles,
ranked by their frequency, is illustrated in Fig. 4. It is interesting to notice that
the top 11 angular patterns (out of 785) cover about 10% of the quartets; coverage
of the quartets of about 20% is obtained by 29 patterns and that of 50% by 122
patterns.

The overall discovery procedure is relatively fast; it takes approximately 20 min-
utes on a standard PC (AMD Athon 2.6GHz). On the same machine, using the same
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Fig. 4. Overall frequency distribution of patterns of angles.

program without filtering out the infrequent triplets, the exhaustive generation of
all possible quartets of SSEs takes more than 3 days.

We observed that overrepresented patterns of angles tend to form clusters in
the 6D space corresponding to six angles. Thus, we further analyzed the set of
overrepresented patterns by clustering them using as distance the Euclidean dis-
tance between angular patterns in 6D space. We experimented with different clus-
tering algorithms and different numbers of clusters and, based on the measure of
silhouette,31 we selected the k-means algorithm with three clusters. Clusters 1 and
3 contain, respectively, the first and second most frequent patterns. Cluster 2 con-
tains the configuration of angles (0, 1, 1, 2, 2, 3) that appears at position 16 in the
overall ranking of patterns. The top patterns for each cluster are shown in Table 1.

Cluster 2 is the smallest one, with 32,988 elements. It contains SSEs character-
ized by the same orientation; in fact, the angles between all pairs of SSEs are in the
range 0◦ to 72◦. The other two clusters are more densely populated; cluster 1 has
221,879 elements and cluster 3 has 230,154 elements. In these two clusters, the SSEs
are arranged with three SSEs with the same orientation and the other one with the
opposite orientation (cluster 1) or with two SSEs in the same orientation and the
other two in the opposite orientation (cluster 3). The smaller number of elements
in cluster 2 reflects the tendency of SSEs to form antiparallel configurations.

In all clusters, the angles vary from 0◦ to 72◦ and from 126◦ to 180◦, while
values between 80◦ and 100◦ are completely absent. For example, in parallel and
antiparallel β-sheets, each β-strand typically forms a small angle with the two
nearby strands. The same is true for interacting α-helices, which pack forming
small angles; furthermore, they are hardly found perpendicular to each other.22,23

We observed that the top pattern (1, 2, 7, 8, 8, 9) is compatible with a known
motif of interacting strands; however, the quartets of interacting strands con-
tribute less than 450 to the total frequency of 5,780. Thus, although the number
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Table 1. The top ten most frequent patterns for the three
clusters.

α0 α1 α2 α3 α4 α5 Frequency

(a) Cluster 1
1 2 3 7 8 9 6,439
1 2 3 7 8 8 5,586
1 1 2 7 8 9 4,657
1 2 3 6 8 9 4,085
1 2 3 7 7 8 3,728
1 1 2 6 7 8 3,648
1 2 2 7 8 9 3,401
1 2 3 6 7 9 2,958
1 1 2 8 8 9 2,833
1 1 2 7 8 8 2,494

(b) Cluster 2
0 1 1 2 2 3 2,623
1 1 1 2 2 3 2,162
0 1 1 1 2 2 2,123
0 1 1 2 3 3 1,667
0 1 1 2 2 2 1,445
0 1 1 1 1 2 1,311
0 1 1 1 2 3 1,246
0 1 2 2 3 3 1,178
1 1 1 2 3 3 1,039
1 1 2 2 2 3 1,010

(c) Cluster 3

1 2 7 8 8 9 5,780
1 3 6 7 8 9 5,100
1 2 6 7 8 9 4,437
2 3 6 7 8 9 3,884
1 3 7 7 8 8 3,831
1 2 7 7 8 9 3,637
1 1 7 8 8 9 2,916
1 3 6 7 8 8 2,572
1 3 7 7 8 9 2,544
0 3 7 7 8 8 2,525

of interacting quartets of SSEs is very small compared to all possible quartets, still
their angular patterns appear among the top overrepresented arrangements.

We now compare our results with the set of all exhaustive quartets. To this end,
we provide here a list of the top ten patterns ranked according to their frequency as
obtained by an exhaustive enumeration [see Table 2(a)]. For the same top patterns,
we also list the frequency of random quartets obtained with a procedure similar
to the one described in Sec. 3.2 for triplets. As can be seen from the table, the
top angular patterns do not deviate too much from the random distribution, and
thus do not appear more frequently than expected by chance. On the other hand,
if we rank the exhaustive quartets by the difference of their frequency from that of
random quartets, we obtain a different outcome [see Table 2(b)]. The top patterns
in this new ranking are, in almost all cases, the same patterns that are detected as
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Table 2. The top angular patterns of the exhaustive enumeration of quartets ranked
by (a) their frequency and (b) the difference of their frequency from that of random
quartets.

α0 α1 α2 α3 α4 α5 Freq. Rand. Freq. Diff.

(a)
3 4 5 6 7 8 16119 17224 −1105
2 3 5 6 7 8 13447 12467 +979
2 4 5 6 7 8 12912 13274 −362
3 3 5 6 7 8 11054 10525 +528
2 4 5 6 7 7 10236 12575 −2339
3 3 4 6 7 8 9795 9613 +181
1 4 5 6 7 8 9503 8582 +921
2 3 4 6 7 8 9496 9089 +406
3 4 4 6 7 8 9355 10361 −1006
2 3 4 5 6 8 8627 10043 −1416

(b)
1 2 3 7 8 9 7439 3267 +4171
1 2 7 8 8 9 5861 2087 +3773
1 2 3 7 8 8 6517 3258 +3258
1 3 6 7 8 9 5939 2807 +3131
1 2 3 6 8 9 5861 2813 +3047
1 1 2 7 8 9 4658 1831 +2826
1 3 5 6 8 9 6146 3373 +2772
2 3 6 7 8 9 5764 3022 +2741
1 2 6 7 8 9 5076 2378 +2697
1 3 4 6 8 9 5915 3364 +2550

overrepresented by our method. In Fig. 5, the distribution of the 785 overrepresented
patterns is shown and compared with that of all 2,262 quartets ranked by their
deviation from random quartets. We find that among the top 100 quartets, 81 are
discovered as overrepresented by our algorithm. In the figure, the curve of elements
in common grows very fast until it saturates, thus confirming that our results are
in accordance with those of a more computing-intensive procedure.

5.2. Searching for motifs

We have seen that overrepresented patterns tend to be arranged into specific spatial
conformations that can be described in terms of groups of parallel and antiparallel
SSEs. Moreover, we have observed that the overall frequency of angular patterns
drops dramatically after the first top patterns, and that this tendency is preserved
even within the different clusters. We now deepen this investigation by analyzing
only homogeneous configurations, i.e. those containing four strands or four helices.
A similar study can be carried out for any combination of strands and helices, but
due to lack of space we report only two cases here. It is interesting to notice that
even in this restricted scenario, we obtain similar results for the clusters, but with a
preference for antiparallel pairs, corresponding to the top-ranked pattern of angles
(1, 2, 7, 8, 8, 9).
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Fig. 5. Distribution of overrepresented quartets over all quartets ranked by deviation from random
quartets.

In general, motifs are arrangements of SSEs that contribute to a given fold.
In most cases, the SSEs involved in a motif are also close in space, implying that
their pairwise distance must be limited. The overrepresented patterns considered
so far have included the SSEs of the selected set of proteins, regardless of their dis-
tances; moreover, the overrepresented patterns are extracted by using only angular
information. We now investigate whether such patterns are also close in space.

We consider only homogeneous patterns of SSEs from the top-ranked configura-
tion (1, 2, 7, 8, 8, 9), and we define two SSEs to be in contact if the distance between
the midpoints of their associated vectors is less than a given threshold (18 Å in our
analysis). Notice that, following our definition, in a motif not all pairs of SSEs must
be in contact; it is enough that every SSE is in contact with at least another SSE.
In our case of four SSEs, a motif should have at least three pairs of SSEs in contact.
Figure 6 shows the number of SSEs in contact for the quartets of segments with
the top angular pattern.

It is interesting to observe that in all cases at least one pair of vectors is in
contact, and very often three or more vectors are in contact. Notice that the use
of the same threshold penalizes helices because of their bigger steric hindrance.21

Nevertheless, more than 65% of the elements have at least two SSEs in contact.
Better results are obtained when considering only strands; in this case, 65% of the
elements have at least three SSEs in contact. Again, we can observe that purely
angular patterns which are overrepresented are in most cases close in space.

To better appreciate the proximity of these overrepresented configurations, in
Fig. 7 we present different examples of four strands with angles (1, 2, 7, 8, 8, 9). In all
of these examples, the four strands are in contact. Although they display different
arrangements, their pairwise angles are similar; thus, they fall into the same cell
of the hash table. These patterns of angles include SSEs from the same β-sheet
[Fig. 7(c)] as well as from different β-sheets [Figs. 7(a) and 7(b)]. The fact that
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(a)

(b)

Fig. 6. Frequency of pairs of SSEs in contact: (a) quartets of strands, and (b) quartets of helices.

(a) (b) (c)

Fig. 7. Three examples of the pattern of angles (1, 2, 7, 8, 8, 9) composed by strands only: (a) protein
1hpl, SSE: 16-17-18-20; (b) protein 1ace, SSE: 0-1-2-3; (c) protein 1aor, SSE: 4-6-8-12.
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(a) (b)

Fig. 8. Examples of patterns of angles composed by helices only: (a) pattern (0, 1, 1, 2, 2, 3), protein
3mdd, SSE: 0-3-13-15; (b) pattern (1, 2, 7, 8, 8, 9), protein 1aa7, SSE: 0-3-7-8.

most, but not all, SSEs are close in space consolidates the idea that arrangements
of angles are influenced by atomic interactions, either directly or through other
SSEs that do not explicitly belong to the quartet.

A similar observation holds for quartets formed by all helices. In Fig. 8, the two
most frequent angular patterns generated by four helices are shown. In Fig. 8(a),
the four helices are such that all pairwise angles are smaller than 72◦ (parallel
configuration); whereas in Fig. 8(b), an antiparallel configuration is represented.

As we observed in Sec. 4 and illustrated in Fig. 7, SSEs belonging to the same
quartet do not necessarily correspond to structures that can be superimposed by
rotation and translation. Nevertheless, they may perform the same functional role.
For this reason, although a limited number of configurations generate the same
angular pattern, we keep all of these arrangements grouped together in the same
pattern.

6. Conclusions

We have proposed an efficient algorithm to extract overrepresented quartets of SSEs
that avoids the exhaustive generation of patterns. We have shown that careful
analysis of the angular bias of random vectors is essential in the determination
of overrepresented arrangements of secondary structures. This study provides a
generalized framework that can be easily extended to patterns composed by more
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than four SSEs. The knowledge of overrepresented patterns could be used to guide
the engineering of stable protein modules or to predict their 3D structures. Other
applications can be designed by replacing the null distribution with that of a specific
family of proteins. The fact that most of the elements in this class are also close in
space consolidates the idea that particular arrangements of angles are more likely
than others, and that these configurations are precisely the ones which biologists
should be interested in.
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